普通数组
2025/5/22大约 2 分钟
普通数组
最大子数组和
力扣题目连接:最大子数组和
给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
子数组是数组中的一个连续部分。
示例 1:
输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。
示例 2:
输入:nums = [1]
输出:1
示例 3:
输入:nums = [5,4,-1,7,8]
输出:23
动态规划
思路和算法
假设 nums 数组的长度是 n,下标从 0 到 n−1。
我们用 f(i) 代表以第 i 个数结尾的「连续子数组的最大和」,那么很显然我们要求的答案就是:
max
因此我们只需要求出每个位置的 f(i),然后返回 f 数组中的最大值即可。那么我们如何求 f(i) 呢?我们可以考虑 nums[i] 单独成为一段还是加入 f(i−1) 对应的那一段,这取决于 nums[i] 和 f(i−1)+nums[i] 的大小,我们希望获得一个比较大的,于是可以写出这样的动态规划转移方程:
f(i)=max
不难给出一个时间复杂度 O(n)、空间复杂度 O(n) 的实现,即用一个 f 数组来保存 f(i) 的值,用一个循环求出所有 f(i)。考虑到 f(i) 只和 f(i−1) 相关,于是我们可以只用一个变量 pre 来维护对于当前 f(i) 的 f(i−1) 的值是多少,从而让空间复杂度降低到 O(1),这有点类似「滚动数组」的思想。
代码:
class Solution {
public:
int maxSubArray(vector<int>& nums) { //采用动态规划的思想
int pre = 0, maxAns = nums[0];
for (const auto &x: nums) {
pre = max(pre + x, x);
maxAns = max(maxAns, pre);
}
return maxAns;
}
};
合并区间
力扣题目连接:普通数组
以数组 intervals 表示若干个区间的集合,其中单个区间为 intervals[i] = [starti, endi] 。请你合并所有重叠的区间,并返回 一个不重叠的区间数组,该数组需恰好覆盖输入中的所有区间 。
示例 1:
输入:intervals = [[1,3],[2,6],[8,10],[15,18]]
输出:[[1,6],[8,10],[15,18]]
解释:区间 [1,3] 和 [2,6] 重叠, 将它们合并为 [1,6].
示例 2:
输入:intervals = [[1,4],[4,5]]
输出:[[1,5]]
解释:区间 [1,4] 和 [4,5] 可被视为重叠区间。
代码:
class Solution {
public:
vector<vector<int>> merge(vector<vector<int>>& intervals) {
if(intervals.size()==0)
{
return {};
}
vector<vector<int>> result;
sort(intervals.begin(),intervals.end());
for(int i = 0;i<intervals.size();i++){
if(result.empty()||result.back()[1]<intervals[i][0]){
result.push_back(intervals[i]);
}
else{
result.back()[1]=max(result.back()[1],intervals[i][1]);
}
}
return result;
}
};